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1 INTRODUCTION

The recent growth of Artificial Intelligence (AI) based systems con-
siderably widespread their use in many application areas and our
daily lives [28]. For instance, AI models are nowadays imbued into
web search engines, self-autonomous vehicles, recommendation
systems, games, and healthcare [24]. Accordingly, the demand for
eXplainable AI (XAI) has risen [20, 21] to help users cope with the
growing complexity and opaqueness of the emerging generation of
AI models [20, 21]. By allowing users to perceive and make sense
of the behaviors and outcomes of such models, XAI enables users
of diverse levels of expertise to trust, manage, design, inspect, and
develop AI models [13].

Since visualizations are the most common form of explana-
tions [24], one of the most prominent ways to achieve XAI is by
leveraging Visual Analytics (VA) [22]. This is also presented by
hundreds of examples discussed in recent surveys [1, 11, 28]. VA
uses interactive data visualization techniques to support users in
understanding, reasoning, and making decisions based on large and
complex datasets [26]. However, as the amount and complexity
of data on VA tasks increase, a single device can be insufficient
to cover the user needs [51]. In response to this, hybrid user in-
terfaces (HUIs) provide a meaningful combination of devices and
modalities to increase the quality of interaction and the display possi-
bilities [51]. HUIs allow users to benefit from a multi-device ecology
for a given task in a specific context. Furthermore, complementing
traditional displays with mixed reality (MR) devices provides advan-
tages such as stereoscopic rendering, unlimited display space, and
natural interaction. Considering that XAI deals with large, complex,
multi-faceted datasets and given evidence that it can be explored in
MR (e.g., [50]), using hybrid or complementary interfaces for XAI
is a natural combination to consider. Yet, research on this is very
rarely, if at all, present in the XAI surveys mentioned before.

In this position paper, we discuss the under-explored intersection
between XAI and HUI incorporating MR devices based on our
previous experiences in developing tools for explainability [3,14,34]
and multi-device systems [43] for VA [29, 38, 42]. We discuss the
challenges of combining these areas and sketch scenarios where clear
research opportunities arise in hopes of kick-starting the discussion
on combining and making the most of both domains.

2 COMBINING HUI AND XAI
As AI has consistently proven capable of permeating every aspect of
our lives, we assume its role in future HUI containing MR devices
will be highly important. Therefore, we first clarify our positions
regarding the future of HUI (Sec. 2.1) and the broad types of XAI
that can be seen in the wild (Sec. 2.4). Afterward, we describe the
challenges and opportunities related to the use of explanations for
AI models in HUIs (Sec. 2.3). Lastly, we highlight the importance
of targeting XAI as opposed to general VA for HUIs (Sec. 2.4).
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2.1 HUIs incorporating MR

Hybrid user interfaces (HUIs), more recently referred to as com-
plementary interfaces, present a “symbiosis of interfaces, where
each component purposefully increases the quality of interaction
and further supports users in their current activity” [51]. Reviewing
the development of the consumer market over the last decades, we
can see that the introduction of laptops, smartphones, tablets, and
smartwatches expanded the device ecology and catered to specific
features and needs of the users. Another emerging technology is
MR head-mounted displays (HMDs), which still need to enter the
consumer market successfully. In general, MR HMDs possess sev-
eral properties that are impossible to imitate with commonly used
devices, making the introduction of MR HMDs into the existing
device ecologies promising. Such properties include:

MR-1: Unlimited Display Space: MR HMDs enable the spatial
placement of virtual information in any real-world or virtual en-
vironment, allowing users to interact with near-unlimited display
space. To complement 2D displays, MR enables extending their
available space by placing virtual content around, above, or between
them [29] or even in front or behind given displays [38].

MR-2: Stereoscopic Rendering: MR HMDs render images for
each eye of the user separately, enabling a stereoscopic percep-
tion of the virtual content. Therefore, complementing a traditional
2D display with an MR HMD can allow a user to benefit from the
provided feeling of immersion and presence [33]. Moreover, con-
cepts such as embedded or situated visualization can be used to view
virtual content in proximity to the related referent [9].

MR-3: Altering the Real-World: As MR content can be placed
everywhere in the environment, it is possible to (temporarily) al-
ter the visual perception of other objects. With regard to desktop
monitors, MR can add additional information in empty spaces, can
hide objects on the monitor screen, or can change the appearance of
already existing objects [15].

MR-4: Natural Interaction: HUIs incorporating MR devices can
not only facilitate the display possibilities but also provide natural
interaction capabilities. Through additional sensors within an HMD,
it is possible to, e.g. track the hands and directly interact with
the presented virtual content. Additionally, physical navigation [7]
is beneficial in finding content spatially placed in the immediate
environment.

MR-5: Personal View: As MR HMDs are worn on a user’s head,
they are inherently personal devices. Such devices allow users to
view private or personalized content without being visible to by-
standers. For example, while a HUI can provide a complex and
detailed visualization for an expert user to interact in an MR envi-
ronment, a non-expert user can simultaneously view a simplified
version of the exact visualization on a 2D display.

Following those benefits, we believe that MR devices will become
an integral part of our future device ecology, allowing users to
overcome some limitations of traditional display and interaction
modalities. However, a distinct device combination (i.e., HUI) can
be used even when not all or any benefits from a specific device type
are exhausted in the given context. One straightforward example is



the transfer of desktop content into the MR space due to missing
additional monitors or the limited display space while still resulting
in an “increased cognitive load [or] high transaction costs” [51].

To summarize, we agree that HUIs combining traditional devices
(i.e., desktops, smartphones) and MR HMDs will find broad applica-
bility in the future. However, we believe that not every possible HUI
will aspire to “purposefully increase the quality of interaction” [51].
HUI may also be used due to, for example, legacy bias, as users may
not want to leave behind their desktop devices altogether but may
be willing to try out alternatives simultaneously.

2.2 Explainability through Visual Analytics
The area of eXplainable Artificial Intelligence (XAI) pertains to
tools that “enable human users to understand, appropriately trust
and effectively manage the emerging generation of AI systems” [20].
While this definition is quite broad (i.e., it does not pertain to only
machine learning but any AI system), we focus on approaches that
leverage Visual Analytics (VA) since the most common form of
explanation is visualization [24]. This focus allows developers to
decouple from the specifics of each model and reduce the prob-
lem to an instance of high-dimensional, multi-faceted abstract data
visualization, which can be related to arbitrary use cases.

Rosa et al. [28] abridge the topic of explanation tools using VA,
based on a cross-analysis of general XAI surveys. We slightly
rephrase some of their points to illustrate a general overview of the
types of XAI we cover with our ideas, as opposed to their more
specific version for only deep learning models. Firstly, they note
two ways to differentiate explanations, based on the moment when
the explanations are generated (ad hoc: while the model is building,
or post hoc: after the model has created outputs) and on the range
that the explanation covers (local: a single input to output relation,
or global: a wide range of inputs and outputs). Then, the authors
propose 5 categories of explanations, which we adapted to general
XAI as follows:

XAI-1. Input Attribution: These explanations focus on (and ex-
tract insights on) which parts (or features) of the input are responsible
for the model’s outcome. For example, in image classification, cer-
tain areas of the input image may contain the most relevant parts
needed for a prediction [10, 40]. On the other hand, for reasoning
systems where multiple proofs can be computed for consequences,
some of the proofs do not use the entirety of the input [4]. On
similarity learning (e.g., for fraud detection), it is also possible to
decompose the inputs to identify which data attributes had the higher
weights leading to the predictions [37].

XAI-2. Model Attribution: In contrast to Input attribution, these
explanations identify which components of the AI model were trig-
gered or had an effect on producing an output. For example, looking
at which neurons or layers activate the most may lead to insights into
the design of a neural network and the role of its components [44].
Another example of OWL ontologies is the computation of atomic
decompositions, which reveal a subset of the ontology responsible
for the computation of a consequence [46]. Using these types of
explanations, it is also possible to extract equivalent models that are
less opaque, such as natural language-like syntaxes that describe
neural network behaviors (e.g., Rule Extraction [6]).

XAI-3. Explanations by examples: Generally speaking, this ex-
planation type illustrates instances (data samples or cases) that the AI
model considers similar to the input from the user. For instance, a rec-
ommendation system may provide examples of previously recorded
cases where the outcome is comparable to the current one. More
explicitly, Amazon’s “Users like you also bought...”, or Netflix’s
“Because you liked X, you may also like Y” hint at this type of ex-
planation and could also show specific instances of purchase or view
histories to support the explanations. It is also possible to combine
these explanations with others. For example, the system Melody [10]

provides examples in which specific features are similar to those
of the user input (XAI-1). The concept of explanations by example
could also extend to the generation of examples that represent an
outcome of an AI system in a more graspable manner. For instance,
if the output of a reasoner system says that ”All birds have wings,
but not all fly”, it may be easier for the user to digest the explanation
when given an explicit example, like penguins.

XAI-4. Counterfactuals: These explanations indicate the minimal
changes needed for the outcome of the models to change. As stated
in [28], they answer the question: “What do I have to change to
obtain a different outcome?”. Similar to Model Attribution, these
type of explanations are very actionable when the users only have
agency over the inputs that the AI receives. For instance, in AI
planning, these explanations enable users to decide which goals to
remove with the least amount of impact on their original plans. On
generative models (e.g., ChatGPT, Dahl-e, GANs), one could pro-
vide options for slight alterations of the inputs, which would result
in dramatic differences in the output of the models. An example of
this explanation method is the Recast system [49], which highlights
specific words within a textual input with respect to certain metrics
influencing the model output.

XAI-5. Model behavior: These approaches support understanding
the models as entities or agents that react to inputs. From human-
in-the-loop techniques, users can freely test the model’s behavior
to understand its shortcomings and capabilities. Examples of these
can be seen in visual representations of the model structure and/or
behaviors using various display technologies. Some examples in-
clude showing a node-link diagram of a neural network in Virtual
Reality [32] and probing an AI with real-world objects using mobile
devices [47]. Colley et al. have also conceptualized how Tangible
user interfaces may be used for making sense of the AI models [12].
It is also possible to create abstract visualizations that focus primar-
ily on post-hoc metrics of the AI models under analysis, like it is
done with the What-if-tool [48].

With the outlined categories of explanations, we can now envision
how they may play a role together with HUIs that involve MR. It
is worth repeating that, to the best of our knowledge, while there
are examples in the wild for XAI on just MR (e.g., [50]), research
on XAI on HUIs is missing. In the following, we will lay out
several reasons we see for this research gap, which in turn become
challenges to overcome for integrating the XAI and HUI research
venues.

2.3 Challenges in Combining XAI and HUI
Research projects on HUIs, such as MARVIS [29], PARVIS [38],
and STREAM [23], illustrate the rich exploration space that comes
to VA on HUIs involving mobile devices, MR HMDs, wall displays,
etc. However, this research usually exists in a theoretical space,
unconcerned with real-life applications and focusing on datasets for
which a single device may not suffice. As stated in the previous
section, looking at the field of XAI from the lens of VA allows us to
examine AI models as high-dimensional, multifaceted abstract data.
This implies that the amount, complexity, and structure of the XAI
data can be already challenging for a single device setup, similar
to the datasets used in the research for VA on HUI. While that by
itself could suffice as motivation to explore the intersection of XAI
and HUI, many of the challenges that affect VA in HUI are inherited
from XAI, as described in the following.

Technical limitations hinder practicality: XAI tools are evalu-
ated based on how well they support users in practical tasks related
to the AI models in question [28]. This means that the XAI systems
themselves have to also be reliable and trustworthy to transmit the
same sentiments about the underlying models. MR systems, how-
ever, are infamous for limitations purely on a technical level (e.g.,



inconsistent calibration, complicated setups involving external track-
ing systems, limited gesture sets, limited field of view), which are
occasionally deliberately overlooked in MR research, considering
an optimistic future where these limitations have been surpassed.
Thus, complementing, for example, a traditional desktop computer
with an MR HMD can introduce more technical challenges than the
ones it alleviates.

Abstract data vs spatial data: AI models are by nature abstract,
and thus the data they produce is also abstract. While one of the most
vital benefits of MR is the ability to render stereoscopic imagery
(MR-2), the absence of inherently spatial/3D data means that there
is no intrinsic need to make use of stereoscopy to display it. There
is, however, a notable trend indicating that stereoscopy has the
potential for overcoming the known limitations of 3D visualizations
of abstract data, as summarized in the survey by Kraus et al. [27].
Likewise, Data Visceralization [30] proposes that virtual reality
can enable a deeper understanding of abstract data through direct
and immersive representations of the abstract data. Another point to
make here is that although the AI models are abstract, they may work
over a domain that involves spatial data (e.g., robot-assisted surgery,
trajectory analysis, architecture, and production systems). This
presents an opportunity to embed (part of) the visual explanations
on spatial simulations or artifacts of the application domain itself.

Legacy bias and skepticism: Although this is a general problem
with unconventional and novel technologies, it is more critical when
convincing stakeholders that the value obtained from such tech-
nologies is higher than their cost (both monetarily and in terms of
learning curves, comfort, and efficiency in solving their tasks). For
instance, general software development, despite its spread, impor-
tance, and influence, has yet to incorporate fully hybrid interfaces
in the industry space. After introducing AI to this process (e.g.,
Github’s Copilot1 or other generative models), we believe that the
addition of XAI does not merit by itself the adoption of comple-
mentary or different display technologies. We experienced this
resistance to unfamiliar technologies while developing Evonne [34],
an explainability system for AI reasoning. In this project, our design
sessions with the domain experts led us to prioritize familiarity with
the device setups supported. Evonne has some features that support
complementary interfaces, i.e., its views can be off-loaded onto any
device with a web browser, and the views remain connected for
linked interactions through sockets. However, it is clear that the full
potential of hybrid setups is not utilized here yet.

2.4 XAI as concrete research for VA on HUIs

The challenges described so far extend to general VA systems dealing
with high-dimensional, multi-faceted abstract data. Therefore, one
must ask what is gained in HUI by targeting XAI as opposed to
general VA. XAI presents a concrete application scenario for VA,
as opposed to the more theoretical cases usually discussed in VA
HUI research. In some of our HUI projects (e.g., [29, 38]), we have
encountered difficulties justifying theoretical data scenarios. With
concrete application areas such as XAI, it is possible to directly
compare the effectiveness of solutions designed for systems using
HUI versus those that exist in traditional, single-device setups.

Furthermore, aspects such as trust, interpretability, and visualiza-
tion literacy have recently received more attention in visualization
research (e.g., [31, 41]). This is in part thanks to the wide use of
AI systems, amplifying these requirements (e.g., [18]). However,
such aspects have not yet been at the focus of HUI for VA, to the
best of our knowledge. Motivated by XAI, we find better footing
for research questions such as: How can HUI systems be designed
to effectively deliver explanations to users of varying visualization
literacy and domain knowledge?; Is there a relation between the

1https://github.com/features/copilot

display technology (or a combination thereof) and acceptance of
explanations?, etc. Lastly, since the end goal of XAI is typically
to convince or justify, the research on the psychological effects and
ethical implications of HUIs also becomes more relevant. For in-
stance, how can we ensure that HUIs do not conceive, mislead, or
trick users into e.g., fallacies about the models?

Overall, we believe that the research venue of XAI is rather
oriented on providing solutions to current problems that are directly
affecting users in their abrupt incorporation of AI into their daily
lives, while research for VA on HUI involving MR HMDs exists
on a more future-oriented, exploratory space. While it is possible
to see XAI as subsumed by VA, the convergence of these research
directions strengthens the relevance of research on VA on HUI and
promises exciting results that we cannot predict.

3 ENVISIONING HUIS FOR EXPLAINABILITY

So far, we have laid out five types of AI explanations, five major
benefits that MR brings to HUI, and our view on why the research on
HUIs for XAI has remained largely unexplored, despite the promises
that such an intersection inherently holds. Our initial proposal to
think about this field simply consists of combining the two previously
described sets of types and benefits, resulting in a 5x5 design space.
The following scenarios illustrate the benefits of MR (see Sec. 2.1)
with respect to the explanation types presented in Sec. 2.4.

Data on Unlimited Display Space (MR-1) Perhaps the easiest-to-
justify benefit of combining a traditional desktop with an MR HMD
for XAI is the ability to place an arbitrary amount of information in
the space beyond the desktop screen. While the field of view limi-
tation affects current technologies, for the simplest version of this
scenario, one could consider the usage of virtual monitors together
with physical monitors, as described by Pavanatto et al. [36]. Tech-
nically then, every XAI tool covered in the current surveys could be
put onto a HUI with minimal effort (and obtaining minimal benefits).
At this point, one could investigate the following: What is the most
efficient virtual vs. real monitor configuration for XAI through VA?
Where to locate the monitors? or; What are the preferred dimen-
sions? Although we speculate that these questions can be reduced to
matters of personal preference. Instead of full virtual monitors, one
could off-load single views onto the MR space, achieving a similar
effect. However, the benefits of arbitrary information allocation in
unlimited display space are more apparent when considering what-if
analysis and comparison tasks. With this, it is now possible to super-
pose, juxtapose, or freely organize views (or the entirety) of the VA
dashboards. This allows for more flexible and natural interactions
(MR-4) with the abstract data representations, partially emulating
the benefits of data physicalization [25]. Generally speaking, all
XAI tasks (XAI-1 to 5) can benefit from such flexibility.

Leveraging Stereoscopy (MR-2) Suppose an AI model is working
on an application domain with inherently 3D data. In that case, it
is relatively easy to imagine that embedding the explanations onto
a stereoscopic representation can be helpful for explanations by
example (XAI-3). For instance, imagine an architect working on
a hybrid setup consisting of an augmented reality (AR) model of
the building under construction and interactive surfaces (this is the
ARchitecture setup proposed by Reipschläger et al. [39]). To this, we
incorporate an AI recommendation system that suggests adjustments
to the architect’s design, trying to minimize the chance of structural
malfunctions in the building. An explanation by example would be
much easier to convey (and for the architect to accept) if the system
could illustrate, directly in AR, buildings that historically presented
similar design flaws.

If the AI model works on abstract data, we can use the previously
mentioned concept of data visceralization. Stereoscopy by itself
may support understanding explanations through, e.g., the use of
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spatiality to assist the user in sense-making of the model behavior
(XAI-5). Imagine a social network engineer working with a graph
neural network (GNN) for social recommendations (e.g., whom to
follow, what interests to subscribe to). This is the case illustrated
by Fan et al. [17]. We can envision a HUI setup, where the engi-
neer has the editor interface for the model on a traditional desktop
application. At the same time, a stereoscopic representation of the
social recommendation graphs complements the 2D monitor display.
Following the argument that stereoscopic representations of graphs
can facilitate analysis of their structures [27], it may be easier for the
engineer to detect artifacts of the networks, such as over-squashing
or over-smoothing [2].

Explaining by Altering the Real World (MR-3) Inspired by the
research on augmented forensics [19], we imagine a forensic pathol-
ogist making a postmortem diagnosis on a patient. To do this, the
doctor has a handheld device for their notes and an AR system
that lets them look at the patient’s body while overlaying 3D rep-
resentations of the organs. An AI model assists the pathologist in
diagnosing and suggests a cause of death that confuses the doctor.
To make sense of this confusion, the AR system may highlight what
characteristics of the body contributed to the predicted cause of
death more heavily (XAI-1, input attribution). Likewise, this con-
venient scenario would benefit significantly from an XAI modality
that enables the AR overlays to show with a counterfactual (XAI-4)
what would need to be different for the cause of death to be different
or no longer certain. However, in this case, the existing AR overlays
would need to accommodate the visual explanation, so using the
handheld device to show the explanation on demand may be more
convenient.

Trust and safety on personal spaces (MR-5) As introduced and
motivated earlier, XAI systems have among their goals to generate
trust towards the AI models. Suppose we envision collaborative HUI
systems where multiple users interact with a central interface while
requesting and querying private information. In that case, it is easy
to imagine an increase in the sense of privacy (and therefore trust)
simply by using devices (e.g., head-mounted displays, mobile) that
do not expose personal views to other users. Consider personal AI
assistants that provide hints/suggestions to individuals in collabora-
tive scenarios, and which the users can monitor and inspect using
XAI views within their personal space or publicly. This scenario is
motivated by recent research on the use of large language models
like ChatGPT for personal education [45] and mental health [5], as
well as the digital twin environments [35], exemplifying the rele-
vance of research on psychological and ethical implications of HUIs
for XAI.

Through these examples, we hope to have illustrated how a design
space for XAI on HUI can be initialized by brainstorming over
explanation types (XAI-1 to 5) with respect to the benefits of the
complementary technology – in our case, MR (MR-1 to 5). The
granularity of this design space can certainly be increased given a
specific application scenario, and as hinted in our descriptions, many
questions arise from this thought experiment, forming a quite broad
research space for the future.

4 DISCUSSION AND OUTLOOK

While we believe it is too early to claim that we understand the full
impact that both of these venues will have, it is certainly possible to
not just envision but also already design systems that enhance XAI
thanks to the strengths of HUIs.

With that in mind, we believe the following points are worth
investigating for researchers interested in XAI and HUI simultane-
ously. The placement of the explanations within the device setup
needs to be considered. This includes the relation between the place-
ment and the semantic relation of the distributed information [16].

Is there a clear benefit to having the explanations on one display
technology over the others? Subsequently, the representation of
the explanations should convey the intended message effectively.
This is highly dependent on who is the user that will receive the
explanation. Is the expertise with respect to the AI model sufficient
for more abstract representations to suffice, or should there be an
additional effort in simplifying, visceralizing, or re-interpreting the
explanations? Should the explanations display adaptiveness? To
what extent? How can transitional interfaces [8] support users with
varying visualization and AI literacy in making sense of the models?
Furthermore, the perspective of the explanation should maximize
sense-making. Is redundancy helpful or obtrusive (e.g., showing the
same explanation in multiple ways simultaneously)? Are formal and
exhaustive details needed, or are approximations sufficient? Lastly,
the context of the explanations (e.g., individual versus collabora-
tive settings, synchronous versus asynchronous tasks) certainly also
influences how the explanations should be delivered, and should
therefore be carefully studied as well.

Besides our proposed design space (which we believe can be both
extended and more granular), one could think of other methods to
board HUI XAI. For instance, one could take existing XAI tools and
redesign them to leverage HUIs, in what can only be described as
completely hypothetical, exploratory research. Then, through user
studies that emulate the evaluations of the original tools, one could
assess if the resulting approaches outperform the originals with
respect to task completion, sense-making, or even user satisfaction.
Although only briefly hinted at so far, we make note that the novelty
effect of HUIs may also influence the sentiment of users with respect
to AI models and their explanations.

5 CONCLUSION

In this position paper, we sketched our approach to combine two
highly contrasting fields: Hybrid User Interfaces (HUIs) and eX-
plainable Artificial Intelligence (XAI). This was motivated by their
similarly widespread influence and applicability to interdisciplinary
fields. To explore this combination, we discussed possible bene-
fits through MR devices in HUIs, the types of XAI that use visual
analytics, and challenges related to their combination. Lastly, we
envisioned possible future scenarios where HUI XAI systems can
find application.

We hold no doubts that both XAI and HUI will continue to rapidly
integrate into our daily lives and work environments. Therefore, we
want to motivate the following research on XAI to investigate how
it can leverage HUI. Furthermore, we firmly believe that AI will
even become an integral part of future HUI systems to, for example,
automatically place distributed information in an immersive and
shared environment, or configure the hybrid space. It follows that
eventually, this also has to be explained – within the same HUI it
supports, or from an external perspective.
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